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Introduction
Area of work

Electroencephalography (EEG) and Imagined/Silent Speech (SS)

EEG → A non-invasive brain activity recording method.
SS → Speech silently formed in the mind without verbal articulation.
Advantages of EEG-based BCI:

▶ Non-invasive and easy to use.
▶ Good temporal resolution.

Challenges in SS recognition using EEG:
▶ Low Signal-to-Noise Ratio (SNR).
▶ Limited spectral and spatial resolution.
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Introduction
Motivation

Rationale behind the work

EEG signals are integral to Brain-Computer Interfaces (BCI),
enhancing interaction for paralyzed individuals [11].
BCIs translate brain signals into actionable commands, bypassing
natural neuromuscular pathways.
Existing BCI paradigms are limited by specific stimuli and class options,
hindering practical communication [5].
EEG signals are utilized in recognizing Imagined Speech (Covert or
Silent speech), where users mentally visualize words instead of
speaking [5].
EEG’s non-invasive nature and ease of use make it ideal for
recognizing imagined speech.
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Introduction
Objectives

Project Objectives

Conduct a EEG Imagined speech phonological classification
Extracting rich spatio-temporal features using Information Set theory
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Review
EEG

Electroencephalography (EEG)

EEG is a non-invasive method to record brain electrical activity using
scalp electrodes [6].
Since Hans Berger first recorded EEG signals in 1924, EEG has been
pivotal in neuroscience research, providing insights into brain
activity [14].
EEG waveforms are categorized into Delta (0.5 to 4 Hz), Theta (4 to
8 Hz), Alpha (8 to 12 Hz), Beta (12 to 35 Hz), and Gamma (greater
than 36 Hz) bands [7].
Preprocessing involves downsampling, filtering, and windowing to
enhance signal quality [7].
Feature extraction analyzes time, frequency, and spatial domains to
capture meaningful data for classification [7].
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Review
Imagined Speech

Imagined/Silent Speech (SS)

Imagined speech, or covert speech, involves mentally representing
words or concepts without verbal articulation [5].
for imagined speech applications generally comprises four steps [7]

▶ Signal acquisition
▶ Signal processing
▶ Feature extraction
▶ Classification

Classification methods include traditional ML (e.g., SVM, kNN, RF)
and deep learning (e.g., CNN, LSTM) [7].
Deep learning models like CNN and LSTM show high performance but
require large training data and are computationally expensive.
Limited data
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Review
KaraOne database

KaraOne database [13]

A publicly available dataset containing data from 3 modalities:
Acoustic, Facial, and EEG data.
Contains EEG signals from 14 subjects, recorded during imagined
speech tasks.
Each subject performed 15 trials, each consisting of four states:
Rest, Stimulus, Imagined speech, and Speaking .
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Review
KaraOne database — Recording

Recording procedure

Rest

REST

5 seconds

Stimulus

/iy/

Û

2 seconds

Imagined
speech

j

5 seconds

Speaking

Ã

Û

∗ seconds

Figure: A visual representation of the recording procedure used in the KaraOne
database. Each trial for each subject consisted of four states: rest, stimulus,
imagined speech, and speaking . The imagined speech segment is the focus of this
study. [Source: Author; Refer [13]]
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Review
KaraOne database — Prompts

Prompts

The cues consist of
Seven phonemic/

/diy/, /iy/, /m/, /n/, /piy/, /tiy/, /uw/syllabic prompts:

Four words from Kent’s
gnaw, knew, pat, potphonetically-similar pairs:

They were chosen in a way to ensure a balanced representation of
nasals, plosives, vowels, voiced, and unvoiced phonemes.
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Review
FEIS dataset

FEIS dataset

Acquisition System: 14-channel Emotiv EPOC+ headset with dry
electrodes
Sampling frequency: 256 Hz
Dataset contents:

▶ 16 phonemic prompts
▶ 10 repetitions of each prompt per participant
▶ 21 participants in total

Signal pre-processing:
▶ Notch filter applied at 50 Hz and 60 Hz using built-in Emotiv software

to remove powerline noise
▶ No pre-processing for physiological artifacts (blinks, saccades) due to

lack of ocular channels in the headset
Epoch Segmentation:

▶ EEG epochs segmented into 5-second intervals
▶ 10% overlap between consecutive epochs

Similar preprocessing steps to the KaraOne dataset
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Review
FEIS dataset

Raw EEG data
14 channels,

60 minutes/subject

Artifact removal
Independent
Components

Analysis (ICA)

Model development
Classification and Regression

models for each speech type
{Spoken, Heard, Imagined}

Figure: Illustration of the model-building procedure for the FEIS dataset.
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Review
FEIS dataset

Table: Comparison of KaraOne and FEIS datasets

KaraOne [13] FEIS [12]

EEG device 64 channels 14 channels
Sampling rate 1000 Hz 256 Hz
Participants 14 participants 21 participants

Duration 30 - 40 minutes 60 minutes
Prompts 7 phonemes + 4 words 16 phonemes

Ashrith (MIT) EEG Imagined Speech July 6, 2024 14 / 67



Review
Information set theory

Information set theory

Information set theory is a mathematical framework that deals
with the representation and manipulation of information sets.
Information sets are mathematical objects that represent the
information content of a given fuzzy set.

Information set theory is used in this study to extract spatio-temporal
features from EEG signals.
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Review
Information set theory

Entropy functions

Entropy functions are used to quantify the uncertainty and
measure the information content in a given information set.

Table: Entropy functions

Entropy Formula

Shannon entropy EShannon = −
∑

i p(xi ) log p(xi )

Shannon fuzzy entropy EX ,LT ,µ = − 1
n

∑
i (µ

k
X (xi )) log (µ

k
X (xi ))

+(1− µk
X (xi )) log (1− µk

X (xi ))
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Review
Information set theory

Information sets

Applications in extracting effective information from fuzzy sets.
Utilized in studies by Aggarwal et al. (2016), Medikonda et al. (2020),
Mamta et al. (2014).
Information sets are derived from fuzzy sets; Values from the fuzzy
set are treated as information source values.
Source values, upon multiplication with an entropy function yields
information values.
The sum of information values in an information set indicates
information/uncertainty.
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Review
Information set theory

Information sets

Solves two main problems involved with fuzzy sets:
▶ Decouples information source values and membership grades in fuzzy

sets.
▶ Extends entropy function to probabilistic or possibilistic domains.
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Methodology
Overview

Data pre-processing
▶ Filtering & Baseline correction

Feature extraction
▶ Windowing
▶ Extracting features
▶ Additional features
▶ Feature reduction

⋆ KaraOne methodology
⋆ Proposed IFS methodology

Classification
▶ Model training & evaluation

EEG data

Preprocessing
Band pass filter

(BPF) [0.5 – 50Hz]

Feature extraction

1. Windowing epochs (0.5 ms)
2. Extracting features using

feature functions

Feature selection
Extracting effective

information
Classification

Figure: Methodology flowchart for the proposed work.
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Methodology
Classification tasks

Classification tasks

Five binary classification tasks of phonological categories are performed
1 Vowel-only vs. consonant (C/V)
2 Presence of nasal (± Nasal)
3 Presence of bilabial (± Bilabial)
4 Presence of high-front vowel (±/iy/)
5 Presence of high-back vowel (±/uw/)
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Methodology
Pre-processing

Filtering

The data was filtered using a band-pass filter with
▶ Lower cut-off frequency of 0.5 Hz
▶ Upper cut-off frequency of 50 Hz.

This was done to remove the noise from the data.

Baseline correction

The data was baseline corrected using the mean of the first 500 ms
of each trial.
This was done to remove the DC offset from the data.

The data tensor was then used for further processing.
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Methodology
Pre-processing

Windowing

Windowing was performed over each imagined speech segment of 5 seconds.
This gave 19 windows per segment, with 500 ms window length.

50% overlap

10% segment length · · ·
5 seconds

Figure: Windowing of the data
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Methodology
Pre-processing

Feature extraction
A set of statistical features and few entropy functions were computed on the
windows, giving a total of 27 features per window.
This results in a feature tensor of size 19× 62× 27.

f ( )

Figure: Extraction of features on the windows
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Methodology
Pre-processing

Table: List of the 27 functions used for feature extraction on the windows. The functions are
divided into three categories: statistical measures, entropies, and fractal dimensions.

Feature functions

Mean Absolute Mean
Maximum Absolute Maximum
Minimum Absolute Minimum
Minimum ± Maximum Curve Length
Energy Nonlinear Energy
Integral Standard Deviation
Variance Skewness
Kurtosis Sum
Spectral entropy Sample entropy
Permutation entropy Singular Value Decomposition

(SVD) entropy
Approximate entropy Petrosian fractal dimension
Katz fractal dimension Higuchi fractal dimension
Root Mean Square Detrended fluctuation
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Methodology
Pre-processing

Additional features

Delta and double delta features were computed on the 27 features,
giving a total of 81 features per window.
This results in a feature tensor of size 17× 62× 81.
The initial two windows were discarded to accommodate the inclusion
of these additional features.
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Methodology
Pre-processing

∆

∆∆
Feature

tensor

Figure: Addition of delta and double delta features to the feature tensor. The initial two
windows were discarded to accommodate the inclusion of these additional features.
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Methodology
Proposed methodology

Temporal

(Windows)

Uncertainity
Gλ(xij)

Fold Information
xij · Gλ(xij) +

Averaged
(axis:{w, c})

Spatial

(Channels)

W
windows

w1

w2

w3

w4

w5

C channels

c1 c2 c3 c4 c5 c6

F
features

f1

f2

f3

f4

Feature tensor
Fused Information

Effective
Information

Figure: Extracting effective information from the features across both temporal and spatial
dimensions resulting in rich spatio-temporal features. The two folds of information are separately
computed across the temporal and spatial dimensions by extracting the uncertainty in the source
values. These are then fused and averaged along the temporal and spatial dimensions to obtain
the effective feature vectors.
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Methodology
Proposed methodology

Extracting Effective information — Information Sets

The procedure for computing effective features from the feature tensor is as
follows:
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Methodology
Proposed methodology

For each epoch, consider the feature tensor X of size [W × C × F ].

Consider the feature matrix Xf for the f th feature in (1), which is
considered as an information source matrix. The features are considered
as information source values comprising an information set along the
temporal and spatial dimensions.

Xf =


x11f · · · x1cf · · · x1Cf
...

. . .
...

. . .
...

xw1f · · · xwcf · · · xwCf
...

. . .
...

. . .
...

xW 1f · · · xWcf · · · xWCf


W×C

1 ≤ w ≤ W

1 ≤ c ≤ C

1 ≤ f ≤ F

(1)
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Methodology
Proposed methodology

The uncertainty across the temporal and spatial dimensions are computed
separately using a Gaussian membership function in (2), (3) as follows:

Gt (xwcf ) = exp

{
−1

2

[
xwcf − µcf

σcf

]2}
,

1 ≤ c ≤ C

1 ≤ f ≤ F
(2)

Gs (xwcf ) = exp

{
−1

2

[
xwcf − µwf

σwf

]2}
,

1 ≤ w ≤ W

1 ≤ f ≤ F
(3)
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Methodology
Proposed methodology

Here µcf and σcf are the temporal mean and standard deviation calculated
across the windows in (4), while µwf and σwf are the spatial mean and
standard deviation calculated across the channels in (5).

µcf =
1

W

W∑
w=1

xwcf , σcf =

√√√√ 1

W

W∑
w=1

(xwcf − µcf )
2 (4)

µwf =
1

C

C∑
c=1

xwcf , σwf =

√√√√ 1

C

C∑
c=1

(xwcf − µwf )
2 (5)
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Methodology
Proposed methodology

The temporal and spatial fold information in (6) are then obtained by
extracting information from the uncertainties in the source values, thereby
considering the set

{
Iλf (xwcf )

}
as an information set, which is given by,

Iλf (xwcf ) = xwcf · Gλ (xwcf ) , λ =
{
t, s

}
(6)

where λ corresponds to the folds, representing the temporal (t) and spatial
(s) folds respectively.

Ashrith (MIT) EEG Imagined Speech July 6, 2024 32 / 67



Methodology
Proposed methodology

The choice of the membership function as a Gaussian in (6) is based on
the fact that the mean of the attributes should remain the same along the
temporal and spatial dimensions in the feature matrix, taken independently.

This is justified based on the assumption that the signals remain
statistically stationary over time within the windows, and that the signals
are localised within their respective spatial regions for each channel.
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Methodology
Proposed methodology

The fused information for a given window w and channel c is then
computed by summing the fold information across the corresponding
window and channel in (7).

If (xwcf ) = I tf (xwcf ) + I sf (xwcf ) ,

1 ≤ w ≤ W

1 ≤ c ≤ C

1 ≤ f ≤ F

(7)
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Methodology
Proposed methodology

The normalised effective information is then computed by taking the mean
at each fused information source value along the temporal and spatial folds
in (8).

Ef =
1

WC

W∑
w=1

C∑
c=1

If (xwcf ) (8)

This gives the following F × 1 effective information vector E,

ET =
[
E1 · · · Ef · · · EF

]
1×F

(9)

These are the effective features that are used to represent the
spatio-temporal information, thus effectively reducing the [W × C × F ]
feature tensor to a F -length feature vector, as in (9).
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Methodology
Proposed methodology

Algorithm 1: Effective Information

Input: [S ×W × C × F ] feature tensor with S epochs, W windows, C
channels, and F features

foreach epoch in feature tensor do
Compute the temporal and spatial fold informations

Gt

(
xwcf

)
= exp

{
− 1

2

[
xwcf −µcf

σcf

]2}
, Gs

(
xwcf

)
= exp

{
− 1

2

[
xwcf −µwf

σwf

]2}
,

Iλf
(
xwcf

)
= xwcf · Gλ

(
xwcf

)
, λ =

{
t, s

}
Compute the fused information from the fold informations

If
(
xwcf

)
= I tf

(
xwcf

)
+ I sf

(
xwcf

)
Compute the effective information vector E

Ef =
1

WC

∑W
w=1

∑C
c=1 If

(
xwcf

)
Output: Feature vector of length [F ] for the epoch

end
Result: Effective feature matrix of dimensions [S × F ]
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Methodology
KaraOne methodology

W
windows
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Feature tensor

Flatten
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Compute
Pearson
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Class labels
for a task

Selected
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Figure: EEG features are ranked based on their Pearson correlations with the given classes for
each task independenly. N features are selected with the highest absolute correlation coefficients,
where N ∈ {5, . . . , 100}. [Source: Author; Refer [13]]
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Methodology
Models

Models

We use the following models to classify the EEG signals:
Hanman Classifier
Decision Tree Classifier
Random Forest Classifier
Support Vector Machines
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Methodology
Models — Hanman Classifier

Hanman Classifier

Based on Information sets [9, 8].
Works by computing the uncertainty of the minimum aggregated
normed errors between the test sample and all the training samples for
each class and then identifies the class with the lowest uncertainty as
the predicted class for the test sample.
The aggregation of the errors between the test and training samples is
done using the Frank t-norm to assess similarity or dissimilarity
between them.
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Methodology
Models — Hanman Classifier

Algorithm 2: Hanman Classifier

Input: Train samples, Test samples
Normalize samples along features axis
foreach sample in test samples do

foreach sample in train samples do
Compute the error between the training sample and the input test
sample

foreach class do
foreach pair of errors in class do

Compute the t-norm of the error vectors

Compute the minimum of the normed error pair
Compute the possibilistic uncertainty associated with the minimum pair

Compute the class with the minimum uncertainty
Output: Predicted class for the test sample

Result: Predicted classes for the test samples
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Methodology
Models — Hanman Classifier

x

y

Figure: Setup of the data points in the classification problem.
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Methodology
Models — Hanman Classifier

x

y

Figure: Hanman Classifier classifies by computing the uncertainty of the minimum aggregated
normed errors between the test sample and all the training samples for each class and then
identifies the class with the lowest uncertainty as the predicted class for the test sample.
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Methodology
Models — Decision Tree Classifier

Decision Tree Classifier [10]

Works by approximating the features and learning them by a series of
if-then rules, recursively dividing data into subsets based on features
that maximize information gain.
Information gain is computed using either the Gini impurity function or
the Shannon entropy function:

EGini =
∑
k

pk(1− pk) EShannon = −
∑
k

pk log pk

Its complexity is closely related to its depth.
Tend to overfit, do not generalize well, and are sensitive to changes in
the data.
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Methodology
Models — Random Forest Classifier

Random Forest Classifier [2]

An ensemble method that works by creating a forest of decision trees.
The forest’s outcome relies on a majority-voting principle, selecting
the most predicted class (mode of the predictions) from the ensemble.
By aggregating predictions of multiple trees, RFC achieves higher
accuracy and better generalization compared to a single DT.
Can handle large datasets and is robust to overfitting, overcoming the
problems in individual decision trees.
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Methodology
Models — Random Forest Classifier

Random Forest

Tree 1 Tree 2 Tree n

Majority voting

Figure: Random Forest Classifier: An ensemble of multiple Decision Trees.
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Methodology
Models — SVM

Support Vector Machine (SVM)

SVMs operate by identifying the optimal hyperplane to effectively
separate data into distinct classes.
This involves finding a hyperplane with the maximum margin between
classes, thereby maximizing the separation between the hyperplane and
the closest data points from each class.
SVMs excel in high-dimensional areas and can achieve nonlinear
classification by utilizing kernel functions that convert input data into
feature spaces of higher dimensions.
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Methodology
Models — SVM
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Figure: The classifier finds the hyperplane that best separates the data into different classes.
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Methodology
Models — Parameters

Model parameters

A Grid search was performed to obtain the best parameters for each model.

Table: Parameters for the different models

Model Parameters

Hanman Classifier alpha=0.5, beta=1, a=1, b=0, q=2

Decision Tree Classifier min samples split=2, max depth=None,

criterion=’gini’

Random Forest Classifier max depth=100, n estimators=100,

class weight=‘balanced’

Support Vector Machines C=1, kernel=‘rbf’, gamma=‘scale’,

shrinking=True
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Methodology
Samplers

Samplers

Random Over Sampler (ROS)
SMOTE (Synthetic Minority Over-sampling Technique) [3]
ADASYN (Adaptive Synthetic Sampling) [4]
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Methodology
Samplers — Random Over Sampler

Random Over Sampler (ROS)

A simple method that addresses class imbalance by randomly selecting
and replicating samples from the minority class.
Over-samples by duplicating original minority class samples
Need to be used with caution to avoid overfitting.
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Methodology
Samplers — SMOTE

Synthetic Minority Over-sampling Technique (SMOTE) [3]

Generates synthetic samples for the minority class by interpolating
between minority class samples.
New samples are created by selecting one of the k nearest neighbors
and interpolating.
Number of synthetic samples generated is proportional to the
minority-to-majority class ratio.
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Methodology
Samplers — ADASYN

Adaptive Synthetic Sampling (ADASYN) [4]

Enhances SMOTE by focusing on samples near the decision boundary
of the classifier.
Uses an internal k-nearest neighbors (k-NN) classifier to identify
samples near the boundary.
Generates synthetic samples based on the density distribution of the
minority class.
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Methodology
Correlation analysis

Correlation analysis: EEG vs. Acoustic features

In addition, Pearson correlation coefficients are computed between the
EEG and acoustic features, comparing the 17× 81 = 1377 audio features
with each of the 62 EEG channels across all imagined speech segments in
the dataset. This provides an estimate of how well each EEG channel
predicts the resulting audio.

Channel T7 FT7 TP7 FT8 P3 CP5 T8 P5 P7 C4

Pearson r 0.2397 0.2343 0.2297 0.2291 0.2284 0.2282 0.2281 0.2280 0.2277 0.2263
p-Value 0.0434 0.0467 0.0550 0.0521 0.0579 0.0573 0.0528 0.0568 0.0571 0.0492

Table: Top 10 highest mean correlations and their corresponding p-values between the acoustic
and EEG features in each of the 62 channels over all the imagined speech segments in the dataset.
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Methodology
Correlation analysis

Figure: EEG electrode placement according to the International 10–20 system with the Modified
Combinatorial Nomenclature (MCN). The red circles indicate the top 10 EEG channels with the
highest absolute correlation coefficients between the Acoustic and EEG features.
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Results
Performance metric analysis

Table: Average accuracies (%) across modalities and classes given the SVM-quad classifier from
KaraOne methodology, and for select classifiers based on the proposed methodology.

Task

Method Classifier Modality C/V ± Nasal ± Bilabial ± /iy/ ± /uw/

KaraOne SVM-quad

EEG 18.08 63.50 56.64 59.60 79.16

FAC 62.54 48.10 63.73 40.25 20.68

AUD 81.05 40.48 39.98 37.63 18.33

EEG+FAC 72.17 48.41 63.73 56.03 19.60

EEG+AUD 61.13 62.72 39.99 49.15 83.75

ALL 75.72 51.87 63.73 46.01 20.20

IFST

RF + ROS

EEG

81.60 60.98 62.86 64.95 90.94

HC + NS / ROS 77.35 54.63 58.05 57.84 89.41

DT + ROS 69.55 55.61 55.96 61.25 82.65

SVM + ADASYN 75.47 44.74 54.91 56.03 40.14
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Results
Performance metric analysis

Summary

The Random Forest classifier with Random over sampler (RF+ROS)
achieved average accuracies of 60%− 90%, significantly improving over
KaraOne SVM classifiers 18%− 79%.
The proposed methodology outperforms KaraOne SVM classifiers in
most tasks, with RF+ROS showing the best performance among all
models except Task 2 (± Nasal).
Overall, improved performance is observed compared to KaraOne
baseline models, despite some preprocessing steps being omitted.
Variation exists among classifiers and samplers, reflecting their ability
to handle uncertainties in EEG data.
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Results
Performance metric analysis

Summary

Different samplers impact classifier performance significantly, indicating
the necessity of balancing classes with samplers.
Random Forest performs best due to its ability to handle data
uncertainties by averaging multiple decision trees, reducing variance
and overfitting.
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Results
Performance metric analysis

Summary

The Hanman classifier with No Sampler (HC+NS) and Random over
sampler (HC+ROS) show identical metrics due to the classifier
computing the least possibilitic uncertainty among all the pairs of norm
errors among all the classes. Since ROS doesn’t generate new samples
but only duplicates the existing ones randomly, the classifier doesn’t
see any new samples and hence the metrics are identical.
SMOTE and ADASYN samplers induce significant changes,
highlighting the Hanman classifier’s sensitivity to dataset alterations
through sampling.
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Results
Limitations

Limitations

The KaraOne feature selection method shows variability in the
attributes of selected features for each task, greatly influenced by the
choice of N.
Introducing new data can alter the set of selected features, often
discarding many without contributing additional information.
In contrast, the proposed methodology maintains a fixed number of
attributes per feature, independent of N, utilizing information from all
features across windows and channels.
Unlike KaraOne, which requires access to speaking segments in trials,
the proposed method focuses solely on imagined speech segments.
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Limitations

Limitations

Restricted Vocabulary Size: EEG-based BCI systems for imagined
speech classification are limited in recognizing a wide vocabulary due
to subtle neural signals easily confounded by noise and overlapping
mental activities.
Mental Repetition Challenges: Participants often repeat the same
word or phrase mentally for data generation, leading to mental fatigue
and reduced signal quality, thereby impacting BCI system performance.
Individual Variability: EEG signals vary significantly across
individuals, necessitating personalized models that may be
resource-intensive and challenging to generalize.
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Applications

Application scenarios

Potential applications include:
Brain-computer interfaces for communication in military settings.
Assistive technologies for individuals with speech impairments due to
neuro-biological disorders such as Alzheimer’s disease, Parkinson’s
disease, and Amyotrophic lateral sclerosis (ALS), where physical
movement is impaired but cognitive function remains intact [1].

Ashrith (MIT) EEG Imagined Speech July 6, 2024 61 / 67



Conclusion
Summary

Summary

Explored Information set theory techniques to extract rich
spatio-temporal features from EEG signals for imagined speech
classification.
Utilized features that significantly reduce the dataset size for
training, while maintaining classification performance.
Addressed the challenge of effectively utilising all information
present in EEG signals without increasing computational complexity.
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Future scope of work

Collecting more data
▶ EMOTIV EPOC+ headset

Deep Learning models
▶ Evaluating the effectiveness of the IFS features
▶ Possible with more data
▶ Transfer Learning

More tasks
▶ Inter-subject variability
▶ Inter-session variability

Multi-class classification
▶ Possible with more data
▶ Each phoneme is a class
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