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ABSTRACT
Imagined speech is a form of speech wherein an individual mentally articulates words without

any physical movement.

In this study, we perform an Imagined speech classification task using EEG signals by

utilising a novel approach to extract rich spatio-temporal features using Information set theory

techniques to capture more information and improve the classification. We improve over the

feature extraction and feature selection with the rich spatio-temporal features offering better

differentiating power and drastically reducing the dataset size used for training without sacrificing

the classification performance. In addition, this procedure allows for effectively utilising all the

information in the EEG signals, reducing the risk of discarding potentially important information

without adding to the computational complexity of the feature space.

The proposed approach was tested on the KaraOne database, obtaining average accuracies

varying between 40%−90% across five binary phonological tasks and trained using multiple

independent classifiers, including the Hanman Classifier, Decision Tree, Random Forest, and

Support Vector Machine. The best performing model is the Random Forest Classifier sampled

with the Random Over Sampler yielding average accuracies of 60%−90% in the tasks, which

is a significant improvement over the KaraOne baseline machine learning method.

This demonstrates the effectiveness and improvement of the feature selection techniques in

creating rich spatio-temporal features for imagined speech classification. The implementation

was done on Python3 and the scikit-learn library and is publicly available on GitHub 1 under the

MIT License.

Keywords: Imagined speech classification, EEG signals, Spatio-temporal features, Information

set theory, Hanman classifier, Machine learning.

1https://github.com/AshrithSagar/EEG-Imagined-speech-recognition
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CHAPTER 1

INTRODUCTION
This chapter provides an overview of brain wave analysis using EEG in research, focusing on its

application to understanding brain function and facilitating communication via Brain-computer

interfaces (BCIs). It begins with an exploration of EEG technology’s historical development and

its significance in mapping brain activity. Then we discuss on the challenges and advancements

in BCI systems, particularly in the context of recognizing imagined speech, highlighting the

research objectives, methodology, and structure of this thesis.

1.1 Area of work

The field of brain wave analysis in the research setting has been extensively researched with

the use of Electroencephalographys (EEGs), which is a non-invasive method to record the

electrical activity in the brain by placing electrodes on the scalp. Since the first recording of

EEG signals by Hans Berger in 1924 [28], it has been applied quite successfully to understand

the workings of the brain, particularly in mapping the brain function to bodily activity, which is

a majorly popular area of interest. The electrodes in the conventional scalp EEG are typically

placed using a standardised Internation 10-20 system [], with conductive electrode gels applied

to improve conductivity and reduce noise due to motion artefacts. Brain-computer interfaces
(BCIs) stand at the forefront of technological advancement, offering individuals with paralysis

a means to interact directly with their surroundings. These systems are pivotal for enhancing

the quality of life for patients and facilitating seamless interaction with the world around

them. Despite their potential, existing BCI paradigms such as event-related potentials and

motor imagery are constrained by their reliance on specific stimuli and limited class options

for practical communication. Moreover, they have demonstrated inefficiencies in user control,

highlighting the pressing need for a more intuitive and user-friendly framework [15]. A number

of research studies have explored the feasibility of performing EEG classification, although

currently these methods have not yet reached a level of performance for practical applications.

The ability to effectively classify EEG signals remains an interesting and challenging problem,

with the potential to better the lives of individuals with disabilities.

The journey of EEG technology began in the early 20th century and has since evolved

into a sophisticated tool for brain research. Over the decades, BCIs have seen substantial

advancements, from basic control systems to complex interfaces that can interpret various mental

states. Imagined speech, in particular, has emerged as a crucial area of study, offering a direct

link between thought and action without the need for physical movement. Despite significant
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progress, several challenges persist. Current BCI methods often struggle with accuracy and

user-friendliness, primarily due to the complex nature of EEG signal interpretation. The limited

class options for communication and the reliance on specific stimuli restrict the practicality

of these systems. Additionally, user control remains a significant challenge, necessitating the

development of more intuitive interfaces. The potential applications of advanced BCIs are vast,

ranging from medical rehabilitation to everyday communication aids. Improved BCI systems

could greatly enhance the independence and quality of life for individuals with disabilities.

Moreover, the integration of these technologies into daily life could lead to new forms of

interaction and control, making technology more accessible and responsive to individual needs.

Imagined speech entails the mental representation of words or concepts an individual

intends to convey without verbal articulation [15]. This cognitive process is captured through

EEG signals, a preferred method due to its non-invasive nature and ease of use and setup.

Using EEG signals to recognise imagined speech from brain activity directly holds promise for

facilitating more efficient control of BCIs with reduced training requirements.

1.2 Rationale behind the work

EEG signals are part of a broader framework of Brain-computer interface (BCI), which have

significantly improved the lives of people affected by paralysis by offering a means to interact

with their surroundings. BCI systems acquire and analyse brain signals and translate them into

useful commands for the user [24]. They do not use the natural neuromuscular pathways since

their main motive is to be used in cases to replace or restore the lost function of individuals

with disabilities. Despite their potential, existing BCI paradigms are primarily constrained by

their reliance on specific stimuli and limited class options, making them difficult for practical

communication [15], highlighting the need for a more intuitive and user-friendly framework.

One area where EEG signals have been used is in recognising Imagined speech, also called

Covert or Silent speech, where the individual visualises a mental representation of words

or concepts they intend to convey instead of verbal articulation [15]. Using EEG signals to

recognise imagined speech from brain activity is preferred due to its non-invasive nature and

ease of use.

1.3 Target specifications

By introducing novel approaches to feature extraction and classification, this research seeks to

advance the field of BCI and contribute to the development of more effective and user-friendly

systems.
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1.4 Project work schedule

In the month of January, the project scope and deliverables were identified. A comprehensive

literature review was already carried out a few months prior, was extended during this period,

and was organised to identify a suitable dataset to be used. In the month of February, the

relevant details of the dataset were obtained, and the pre-processing parts were implemented first.

The feature extraction parts in the corresponding literature were implemented, followed by the

implementation of the proposed methodology and the novel feature extraction method. In March,

the classification models were identified and trained on the dataset using both the literature and

proposed techniques, and they were subsequently evaluated. The results were analysed in the

month of April, with relevant metrics and details to be included. The documentation of the

implementation of the project repository was worked on in March and continually improved and

completed by the month of May. The final report and documentation were compiled during May

and June, and the final project presentation was prepared.

1.5 Organisation of the report

This thesis report comprises 5 chapters, with this chapter being the Introduction and the

first. Chapter 2 provides a comprehensive review of the literature on EEG classification

and feature extraction techniques, and datasets for imagined speech classification. Chapter

3 thoroughly outlines the research methodology, including details on the dataset, preprocessing

steps, and classification techniques utilised. Chapter 4 presents the results of the classification

task and evaluates the model performance and assesses thei effectiveness. It also discusses

the implications of the study, highlighting the contributions and limitations of the research.

Chapter 5 serves as the conclusion of the report, summarizing the main findings and providing

recommendations for future research. Finally, the last section provides references and the

appendices contain additional information and supplementary materials.
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CHAPTER 2

LITERATURE REVIEW
This chapter presents a comprehensive overview of the literature on EEG-based imagined

speech recognition. We start with the EEG modility in general and discuss on the different

frequency bands associated with it. We then move on to the concept of imagined speech and its

classification using machine learning models. The introduction and application of information

sets in literature are covered next. Finally, we discuss the popular datasets used in the literature

for imagined speech classification, and the outcomes and objectives of this study.

2.1 Electroencephalography (EEG)

Electroencephalography (EEG) is a non-invasive and efficient modality used to record electrical

brain activity by measuring electrical signals from electrodes placed on the scalp [16]. Since

Hans Berger first recorded EEG signals in 1924 [28], EEG has been employed to study brain

activity and has become an invaluable tool in neuroscience. EEG waveforms are generally

divided into consecutive bands based on frequency ranges as Delta (0.5 to 4 Hz), Theta (4 to

8 Hz), Alpha (8 to 12 Hz), Beta (12 to 35 Hz), and Gamma (greater than 36 Hz), respectively,

and are essential in EEG analysis providing insights into the brain activity at different levels of

consciousness and cognitive processing [17]. The frequency bands are summarised in Table 2.1.

Preprocessing of EEG signals usually includes a combination of downsampling, filtering

and windowing. Filtering can be done in the spatial, time, or frequency domains [17]. Bandpass

filters are typically used to filter out the EEG signals into the range of 0.5−30Hz under standard

clinical recording techniques. The aim of feature extraction is to capture the relevant and

meaningful information within the data, which is generally advantageous in the classification

step and can be accomplished by analysing the time, frequency, and spatial domains [17].

2.1.1 Frequency bands

Gamma band : Associated with higher cognitive functions, such as memory, perception, and

problem-solving.

Beta band : Typically associated with active thinking, focus, and concentration. This brain

activity is commonly observed bilaterally across the frontal and parietal lobes [16].

Alpha band : Associated with relaxation, meditation, and creativity. It induces the production

of serotonin, which is the neuro-transmitter that increases relaxation and pain relief [16]. It is

evident on both sides of the brain, with marginally greater amplitude typically observed on the
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Table 2.1: EEG waves and their frequency bands

Frequency
band

Frequency
range

State Signal

Gamma > 35 Hz
Combination of two
senses

0.0 0.2 0.4 0.6 0.8 1.0

Beta 12−35 Hz
Active thinking,
Alertness

0.0 0.2 0.4 0.6 0.8 1.0

Alpha 8−12 Hz Calmness, Day dream
0.0 0.2 0.4 0.6 0.8 1.0

Theta 4−8 Hz Deeply relaxed
0.0 0.2 0.4 0.6 0.8 1.0

time (s)

Delta 0.5−4 Hz
Deep rest, dreamless
sleep

0.0 0.2 0.4 0.6 0.8 1.0

non-dominant hemisphere. It is recorded from the occipetal and parietal regions and represents

the white matter of the brain.

Theta band : Linked with deep relaxation, meditation, and sleep.

Delta band : Linked to deep sleep, unconsciousness, and healing processes. This wave exhibits

the highest amplitude and is the slowest among other brain waves [16].

2.2 Imagined speech

Imagined speech, also referred to as Covert speech, entails the mental representation of words

or concepts an individual intends to convey without verbal articulation [15]. BCI for imagined

speech applications generally comprises four steps: signal acquisition, applying relevant signal

processing techniques, feature extraction in a particular domain and classification [17]. For the

classification of imagined speech, researchers have utilized both traditional machine learning

methods and deep learning techniques [17]. Several traditional machine learning models have

been attempted for classifying imagined speech, including ‘Support Vector Machines (SVMs)’,

‘k-Nearest Neighbors (k-NN)’ and ‘Random Forest (RF)’. While these perform well, deep

learning models such as ‘Convolutional Neural Network (CNN)’ and ‘Long Short-Term Memory

(LSTM)’ networks have shown better performance [17]. However, they have drawbacks, needing

a significantly large amount of training data and being computationally expensive. A popularly

used dataset for imagined speech classification is the KaraOne database [27], which includes
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seven phonemic/ syllabic prompts and four words. There has been an effort to use a more

cost-effective acquisition system, as carried out in the FEIS dataset [26], where they adopt a

similar approach to KaraOne.

In the study done by [27], the database included seven phonemic/syllabic prompts and four

words which were classified across five imagined speech binary classification tasks (See 2.4.1).

In the following study done by [26], the dataset was collected using a similar approach but with

a more cost-effective acquisition system (See 2.4.2).

2.3 Information sets

The applications of Information sets to extract effective information were extensively utilised

in [1, 19, 18], addressing the shortcomings of fuzzy sets. An information set is created from a

fuzzy set, where the values in the fuzzy set are considered as information source values, which,

when multiplied with an entropy function, yields the information values. These information

values constitute an information set whose sum denotes the information/uncertainty in the

information set. Information sets decouple the information source values and the membership

grades in a fuzzy set by computing the information values as a product and offer an extension to

the entropy function to be applied either in the probabilistic or possibilistic domain or both. In

each of the problems dealt with in [1, 19, 18], feature extraction was performed by transforming

the data into some sort of information set, following which the effective features were extracted

to enable better classification. The motivation for the proposed methodology follows this theme.

2.4 Datasets

2.4.1 KaraOne dataset

The KaraOne database 1 [27] is a publicly available multi-modal imagined speech dataset. It

contains data from 14 participants (four female and eight male) over three modalities: EEG

signals, facial tracking, and audio signals. A 64-channel Neuroscan Quick-cap recorded the EEG

signals sampled with a sampling frequency of 1000 Hz. The cues consist of seven phonemic

prompts (/diy/, /iy/, /piy/, /tiy/, /uw/, /m/, /n/) and four words (knew, gnaw, pat, pot), and

were chosen in a way that ensured a balanced representation of vowels, plosives, nasals, and

voiced and unvoiced phonemes. The experimental setup used while recording the data is given

in Fig. 2.1.

Each trial involved four states:
1Available at ‘https://www.cs.toronto.edu/~complingweb/data/karaOne/karaOne.html’
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1. Rest: A 5-second relaxation period during which the subject was instructed to unwind

and stop actively thinking.

2. Stimulus: A 2-second period during which the participant was presented with a visual and

auditory prompt. The visual prompt was displayed on the monitor screen and consisted of

a written text of the prompt, while the auditory prompt was played through the speakers.

The participant was also instructed to position their articulators in this stage.

3. Imagined speech: A 5-second phase during which the subject during which the subjects

silently imagined speaking the prompt without any verbal articulation or physical

movement.

4. Speaking: A 2-second period during which the subject spoke the prompt aloud, while the

Kinect sensor recorded the facial animation units and the microphone recorded the audio

signals.

Rest

REST

5 seconds

Stimulus

/iy/

Û

2 seconds

Imagined
speech

j

5 seconds

Speaking

Ã

Û

∗ seconds

Figure 2.1: A visual representation of the recording procedure used in the KaraOne database.
Each trial for each subject consisted of four states: rest, stimulus, imagined speech, and speaking.

2.4.2 FEIS dataset

The FEIS dataset 2 was collected by [26] using a cost-effective acquisition system, viz., a

14-channel Emotiv EPOC+ headset with dry electrodes with a sampling frequency of 256 Hz.

The dataset consists of 16 phonemic prompts, with 10 repetitions of each prompt per participant

among the 21 participants. The data was preprocessed using a notch flter using the built-in

Emotiv software at 50 Hz and 60 Hz to remove powerline noise. No signal preprocessing was

carried out to remove physiological artifacts (such as blinks or saccades) due to unavailibility of

the ocular channels in the headset. The data was then segmented into 5-second imagined speech

EEG epochs, with a 10% overlap between consecutive windows. The preprocessing steps are

similar to the one carried out in the KaraOne dataset.
2Available at https://doi.org/10.5281/zenodo.3554128
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Raw EEG data
14 channels,

60 minutes/subject

Artifact removal
Independent
Components

Analysis (ICA)

Model development
Classification and Regression

models for each speech type
{Spoken, Heard, Imagined}

Figure 2.2: Illustration of the model-building procedure for the FEIS dataset.

Table 2.2: Comparison of KaraOne and FEIS datasets

KaraOne [27] FEIS [26]

EEG device 64 channels 14 channels
Sampling rate 1000 Hz 256 Hz

Participants 14 participants 21 participants
Duration 30 - 40 minutes 60 minutes
Prompts 7 phonemes + 4 words 16 phonemes

2.5 Summarised outcomes

• Electroencephalography (EEG) records brain electrical activity non-invasively. EEG

waveforms are grouped into ‘Delta’, ‘Theta’, ‘Alpha’, ‘Beta’, and ‘Gamma’ bands

according to their frequency ranges.

• Preprocessing techniques like filtering and downsampling are essential to enhance EEG

signal quality for analysis, enabling meaningful feature extraction in EEG-based studies.

• Imagined speech, also known as covert speech, involves mental representation of words

or concepts without verbalizing. In BCI research, a typical pipeline includes signal

acquisition, applying relevant signal processing techniques, feature extraction in a

particular domain and classification.

• Classification of imagined speech utilising classical machine learning models (e.g., SVM,

KNN, RF) and deep learning models (e.g., CNN, LSTM) have been carried out in

literature [17], with varying results.

• Popular datasets for imagined speech classification include the KaraOne database,

featuring 4 words and 7 phonemic/syllabic prompts, and the cost-effective FEIS dataset.

• Information sets, exemplified in studies [1, 19, 18], enhance feature extraction by

quantifying information and improving classification accuracy across various applications.

2.6 Objectives

In this work, we look into the following main objectives:
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• Conduct a classification task utilising the EEG Imagined speech dataset with the extracted

features and evaluate the performance of the proposed method, comparing it with existing

techniques.

• Extract rich spatio-temporal features using Information Set theory techniques to capture

more information effectively and improve classification.
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CHAPTER 3

METHODOLOGY
This chapter contains the methodology used in the proposed work. Fig. 3.1 shows the flowchart

of the methodology, which comprises three main parts: preprocessing of the data, feature

extraction and the classification tasks. The data preprocessing involves filtering the data, filtering

noise and windowing the data. Feature extraction involves extracting the features from the

data, resulting in a feature matrix that is used for classification. The classification part involves

training the machine learning model and evaluating its performance.

EEG data

Preprocessing
Band pass filter

(BPF) [0.5 – 50Hz]

Feature extraction

1. Windowing epochs (0.5 ms)
2. Extracting features using

feature functions

Feature selection
Extracting effective

information
Classification

Figure 3.1: Methodology flowchart for the proposed work.

3.1 Dataset

This study focuses on the 5-second imagined speech segment, during which participants imagines

speaking the prompt without any associated physical movements. The recording procedure has

been given in Section 2.4.1.

Eight men and four women with a mean age of 27±5 years [27] were selected from the

University of Toronto to participate in the study. They were all free of neurological disorders

and drug addiction, and none of them had any history of visual, auditory, or motor impairments.

They also had some post-secondary education and were right-handed dominant. Given that

the study was carried out in English, the participants’ English language competency was also

considered. Two participants fluently spoke North American English, having learnt it at an

average age of six. Ten participants stated that North American English was their first language.

The 14 subjects are labelled as {‘MM05’, ‘MM08’, ‘MM09’, ‘MM10’, ‘MM11’, ‘MM12’,

‘MM14’, ‘MM15’, ‘MM16’, ‘MM18’, ‘MM19’, ‘MM20’, ‘MM21’, ‘P02’} respectively, out of

which KaraOne only uses 12, while all 14 are used in this study.

3.1.1 Preprocessing

A bandpass filter filtered out the EEG signals into the range of 0.5−30Hz. Baseline correction

was applied to the EEG data to remove DC offset. A laplacian filter using the neighbourhood of

adjacent channels was not used due to the possible loss of important EEG information [17]. The

preprocessing workflow is shown in Figure 3.2.
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50% overlap

10% segment length · · ·
5 seconds

f ( )
∆

∆∆
Feature

tensor

Figure 3.2: Preprocessing workflow: (a). Windowing the data. (b). Extracting features from the
windows. (c). Addition of delta and double delta features.

3.1.2 Feature extraction

Windowing was performed over each imagined speech segment of 5 seconds, with each window

length being 10% of the segment length and with 50% overlap between consecutive windows.

This gave 19 windows per segment, with each window length being about 500 ms. The

assumption is that the signals in each window will be statistically stationary over that period,

which is useful for feature extraction as the features can be assumed to be time-invariant over

this period. This was done to capture the temporal dynamics of the signal, as EEG signals are

inherently non-stationary in nature.

A set of statistical features and few entropy functions were computed on the windows,

giving a total of 27 features per window. The choice of the features used was based on [26]

and [27]. The feature functions are described in Table A.2, and the extracted features summary

is given in Table 3.1. In addition, the delta (differential) and double-delta (acceleration) features

are also computed, resulting in tripling the number of features per window with very little

computational overhead, thereby giving a total of 27×3 = 81 features per window across the 62

channels in the dataset. The initial two windows were discarded to accommodate the inclusion

of these additional features. These features approximate the first and second derivates of the

signal, respectively, in a simple manner without much computational overload and are useful

in capturing the dynamics of the signal. The differentiators tend to amplify the noise in the

signal, which is partly mitigated by considering the double differentiators. This gives a total of

17×62×81 = 85,374 features per segment/epoch.

The procedure for extracting the effective information is given as follows. Consider the

feature matrix X f for the f th feature in (Eqn. 3.1), which is considered as an information source

matrix. The features are considered as information source values comprising an information set

11



Table 3.1: Features extracted from each subject in the KaraOne database

Subject Features Labels
shape shape

MM05 (165, 17, 62, 81) (165,)
MM08 (131, 17, 62, 81) (131,)
MM09 (132, 17, 62, 81) (132,)
MM10 (132, 17, 62, 81) (132,)
MM11 (132, 17, 62, 81) (132,)
MM12 (132, 17, 62, 81) (132,)
MM14 (132, 17, 62, 81) (132,)
MM15 (132, 17, 62, 81) (132,)
MM16 (132, 17, 62, 81) (132,)
MM18 (132, 17, 62, 81) (132,)
MM19 (132, 17, 62, 81) (132,)
MM20 (132, 17, 62, 81) (132,)
MM21 (132, 17, 62, 81) (132,)

P02 (165, 17, 62, 81) (165,)

along the temporal and spatial dimensions.

X f =



x11 f · · · x1c f · · · x1C f
... . . . ... . . . ...

xw1 f · · · xwc f · · · xwC f
... . . . ... . . . ...

xW1 f · · · xWc f · · · xWC f


W×C

1 ≤ w ≤W

1 ≤ c ≤C

1 ≤ f ≤ F

(3.1)

The uncertainity across the temporal and spatial dimension are computed separately using a

Gaussian membership function (Eqn. 3.2, Eqn. 3.3) as follows:

Gt
(
xwc f

)
= exp

{
−1

2

[
xwc f −µc f

σc f

]2
}
,

1 ≤ c ≤C

1 ≤ f ≤ F
(3.2)

Gs
(
xwc f

)
= exp

{
−1

2

[
xwc f −µw f

σw f

]2
}
,

1 ≤ w ≤W

1 ≤ f ≤ F
(3.3)

where µc f and σc f are the temporal mean and standard deviation calculated across the windows

(Eqn. 3.4), while µw f and σw f are the spatial mean and standard deviation calculated across the

channels (Eqn. 3.5).

µc f =
1

W

W

∑
w=1

xwc f , σc f =

√
1

W

W

∑
w=1

(
xwc f −µc f

)2 (3.4)
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µw f =
1
C

C

∑
c=1

xwc f , σw f =

√√√√ 1
C

C

∑
c=1

(
xwc f −µw f

)2 (3.5)

The choice of the Gaussian membership function helps to determine the uncertainity in the

source values, which is then used to extract the effective information.

The temporal and spatial fold informations (Eqn. 3.6) are then obtained by extracting

information from the uncertainities in the source values, therby considering the set
{

Iλ
f

(
xwc f

)}
as an information set, which is given by,

Iλ
f
(
xwc f

)
= xwc f ·Gλ

(
xwc f

)
, λ =

{
t,s
}

(3.6)

where λ corresponds to the folds, representing the temporal (t) and spatial (s) folds respectively.

The fused information for a given window w and channel c is then computed by summing

the fold informations across the corresponding window and channel (Eqn. 3.7).

I f
(
xwc f

)
= It

f
(
xwc f

)
+ Is

f
(
xwc f

)
,

1 ≤ w ≤W

1 ≤ c ≤C

1 ≤ f ≤ F

(3.7)

The normalised effective information is then computed by taking the mean at each fused

information source value along the temporal and spatial folds (Eqn. 3.8).

E f =
1

WC

W

∑
w=1

C

∑
c=1

I f
(
xwc f

)
(3.8)

This gives the following F ×1 effective information vector E,

ET =
[
E1 · · · E f · · · EF

]
1×F

(3.9)

These are the effective features that are used to represent the spatio-temporal information,

thus effectively reducing the [W ×C×F ] feature matrix to a F-length feature vector (Eqn. 3.8).

The effective information extraction is shown in Figure 3.3. This procedure is summarised as a

pseudocode in Algorithm 1.
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Gλ(xij)
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f1
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f4

Feature tensor
Fused Information

Effective
Information

Figure 3.3: Proposed methodology: Extracting effective information from the features across
both temporal and spatial dimensions resulting in rich spatio-temporal features. The two folds of
information are separately computed across the temporal and spatial dimensions by extracting
the uncertainty in the source values. These are then fused and averaged along the temporal and
spatial dimensions to obtain the effective feature vectors.

Algorithm 1: Effective Information
Input: [S×W ×C×F ] feature tensor with S epochs, W windows, C channels, and F

features
foreach epoch in feature tensor do

Compute the temporal and spatial fold informations;

Gt
(
xwc f

)
= exp

{
−1

2

[
xwc f−µc f

σc f

]2
}

, Gs
(
xwc f

)
= exp

{
−1

2

[
xwc f−µw f

σw f

]2
}

,

Iλ
f

(
xwc f

)
= xwc f ·Gλ

(
xwc f

)
,λ =

{
t,s
}

;
Compute the fused information from the fold informations;
I f
(
xwc f

)
= It

f

(
xwc f

)
+ Is

f

(
xwc f

)
;

Compute the effective information vector E ;
E f =

1
WC ∑

W
w=1 ∑

C
c=1 I f

(
xwc f

)
;

Output: Feature vector of length [F ] for the epoch
end
Result: Effective feature matrix of dimensions [S×F ]
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3.2 Model

Four different classifiers were used to perform the classification tasks: Hanman Classifier (HC),

Decision Tree Classifier (DT) Classifier, Random Forest Classifier (RF), and Support Vector

Machine (SVM). Table 3.2 provides the details of the parameters for the models.

Hanman Classifier: The Hanman Classifier [19, 18] is based on Information sets. It works

by computing the uncertainty of the minimum aggregated normed errors between the test sample

and all the training samples for each class and then identifies the class with the lowest uncertainty

as the predicted class for the test sample. The aggregation of the errors between the test and

trainig samples is done using the Frank t-norm to assess similarity or dissimilarity between them.

The pseudocode for the Hanman Classifier is shown in Algorithm 2.

Algorithm 2: Hanman Classifier
Input: Train samples, Test samples
Normalise samples along features axis;
foreach sample in test samples do

foreach sample in train samples do
Compute the error between the training sample and the input test sample;

end
foreach class do

foreach pair of errors in class do
Compute the t-norm of the error vectors;

end
Compute the minimum of the normed error pair;
Compute the possibilistic uncertainty associated with the minimum pair;

end
Compute the class with the minimum uncertainty;
Output: Predicted class for the test sample

end
Result: Predicted classes for the test samples

Decision Tree Classifier: The Decision Tree Classifier [22] is a straightforward and

extensively employed machine learning approach. It works by approximating the features

and learning them by a series of if-then rules, by recursively dividing the data into subsets

based on features that maximise the information gain. Generally, the information gain is

computed using either the Gini impurity function or the Shannon entropy function, given by

EGi = ∑k pk(1− pk) and ESh =−∑k pk log pk, respectively. The complexity of a Decision Tree

is closely related to it’s depth. Decision Trees have a drawback that they tend to overfit and do

not generalise well, and are volatile to changes in the data.
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Random Forest Classifier: The Random Forest Classifier [5] is a powerful ensemble

method that works by creating a whole forest of Decision Trees. The forest’s outcome relies on a

majority-voting principle, where it selects the most predicted class (the mode of the predictions)

from the ensemble. By aggregating the predictions of multiple trees, Random Forest can achieve

higher accuracy and better generalization compared to a single Decision Tree. It can handle large

datasets and is robust to overfitting, overcoming the problems in Decision Trees. An illustration

of a general Random Forest Classifier is shown in Figure 3.4.

Random Forest

Tree 1 Tree 2 Tree n

Majority voting

Figure 3.4: Random Forest Classifier. The classifier is an ensemble of multiple Decision Trees.
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Support Vector Machines: SVMs [3, 8, 6] operate by identifying the optimal hyperplane

to separate data into distinct classes effectively. This involves finding a hyperplane with the

maximum margin between classes, thereby maximizing the separation between the hyperplane

and the closest data points from each class. SVMs excel in high-dimensional areas and can

achieve nonlinear classification by utilizing kernel functions that convert input data into feature

spaces of higher dimensions. An illustration of an SVM is shown in Figure 3.5.

w⃗

w·x−b=−1
w·x−b=0

w·x−b=1

H
yp
er
pl
an
e

Su
pp
or
t
ve
ct
or

Su
pp
or
t
ve
ct
or

M
argin

Figure 3.5: Support Vector Machine: The classifier finds the hyperplane that best separates the
data into different classes.
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3.3 Classification

For classification, the labels were converted to binary classes to allow for a binary classification

task. Only the thinking segment of the data was used after preprocessing. Five binary

classification tasks of phonological categories were performed, as in the KaraOne paper [27]:

‘consonant vs. vowel-only (C/V)’, presence of ‘nasal (± Nasal)’, ‘bilabial (± Bilabial)’, ‘high-

front vowel (±/iy/)’, and ‘high-back vowel (±/uw/)’, respectively. The classification of the

mental states of the speaker and multi-class classification tasks falls beyond the scope of this

study.

3.3.1 Class imbalance

In addition, the dataset was resampled to balance the classes for each binary task. Even though

the trials had roughly the same number of samples for each trial, and hence for each class,

the binary labels for the tasks were imbalanced. The class imbalance in each of the tasks

was handled by resampling the dataset to account for the missing samples in the minority

class,.i.e., oversampling techniques were used to balance the classes. The dataset was resampled

to balance the classes for each binary task using different oversamplers: Random Over Sampler,

ADASYN and SMOTE (See Section 3.4). In addition, the case where no resampler used was

also considered, to compare the results with the resampled datasets. The resampling was done

on the training set only, to prevent any possible data leakage from the test set.

3.3.2 Evaluation metrics and Model parameters

Various classification metrics were used to evaluate the model: ‘Accuracy’, ‘F1-score’,

‘Precision’ and ‘Recall’. Hyperparameter tuning was performed with a grid search along

with cross-validation (CV). The CV strategy chosen was stratified k-fold performed with k = 5

to ensure that each fold had the same class distribution as the original dataset. The training split

in each fold was resampled after the split, and the validation set is kept free from the resampled

data to disallow any data leakage during CV. The metrics are reported as the average across the

folds, along with the standard deviation.

3.4 Sampling

The different oversamplers are discussed here: Random Over Sampler, SMOTE and ADASYN.

3.4.1 Random Over Sampler

The Random Over Sampler (ROS) is a simple oversampling method that addresses class

imbalance by randomly selecting and replicating samples from the minority class until it matches
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Table 3.2: Parameters for the different models

Model Parameters

Hanman Classifier alpha=0.5, beta=1, a=1, b=0, q=2

Decision Tree Classifier min samples split=2, max depth=None,

criterion=’gini’

Random Forest Classifier max depth=100, n estimators=100,

class weight=‘balanced’

Support Vector Machines C=1, kernel=‘rbf’, gamma=‘scale’, shrinking=True

the number of samples in the majority class. This technique over-samples by duplicating original

minority class samples, thereby, care must be taken to avoid overfitting.

3.4.2 SMOTE and ADASYN

‘Synthetic Minority Over-sampling Technique (SMOTE)’ [7] and ‘Adaptive Synthetic Sampling

(ADASYN)’ [12] are oversampling techniques designed to address class imbalance by generating

synthetic samples for the minority class. SMOTE interpolates between minority class samples

to create synthetic instances, while ADASYN builds on SMOTE by considering the density

distribution of the minority class. In SMOTE, a new sample xnew is generated by selecting one

of the k nearest neighbors of xi, denoted as xzi, and computing:

xnew = xi +λ × (xzi − xi)

where λ is a random number between 0 and 1. The number of synthetic samples generated is

proportional to the ratio of minority class to majority class samples.

ADASYN enhances SMOTE by focusing on samples near the decision boundary of the

classifier, identified using an internal k-Nearest Neighbors classifier, to generate synthetic

samples.
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CHAPTER 4

RESULTS

4.1 Performance metric analysis

The classification metrics on the five binary classification tasks for different classifiers, along

with the use of different samplers, have been reported in Table 4.1. The corresponding confusion

matrices have been reported in Table 4.2. The best performing model is the Random Forest

classifier sampled with the Random over sampler yielding average accuracies of 60%−90% in

the tasks, which is a significant improvement over the KaraOne SVM classifiers [27]. Overall,

an improvement in the performance over the KaraOne baseline models is observed, given that

some of its pre-processing steps were not carried out in this study.

The results in Table 4.1 show that there is a lot of variation among the different classifiers

and samplers combinations. Since the effective features rely on the uncertainities in the EEG

data, the classifiers that can handle them better are naturally able to perform better. The results

also show that the use of different samplers has a significant impact on the performance of the

classifiers. The ANOVA analysis of the features, given in Table A.1, shows that a majority of

the features used are not much correlated, with Pearson correlation values tending to be near

zero. This suggests the use of a large number of features, which are mostly uncorrelated, and

hence, the use of samplers to balance the classes is essential.

It can be observed that the case with using the Hanman classifier with No Sampler (NS)

and Random Over Sampler (ROS) have identical metrics due to the classifier computing the

least possibilitic uncertainty among all the pairs of norm errors among all the classes. Since

ROS doesn’t generate new samples but only duplicates the existing ones randomly, the classifier

doesn’t see any new samples and hence the metrics are identical. The significant changes while

using SMOTE and ADASYN samplers suggests that the Hanman classifier is quite sensistive to

dataset changes due to sampling.

The RF classifier perfoms the best due to its robustness in handling the uncertainities in the

data by inherently averaging multiple decision trees which helps reduce variance and overfitting.

The results in Table 4.3 show that the proposed methodology outperforms the KaraOne SVM

classifiers [27] in all the tasks except for the Task 2 (± Nasal), with RF+ROS performing the

best among all the models.
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Table 4.1: Performance metrics for different tasks across different classifiers and samplers. Each
cell contains the mean and standard deviation of the metric across the 5 folds.
NS: No Sampler, ROS: Random Over Sampler, SMOTE, ADASYN.

Task Metric (%) Hanman Classifier Decision Tree Classifier

NS ROS SMOTE ADASYN NS ROS SMOTE ADASYN

C/V

Accuracy 77.35±1.39 77.35±1.39 54.08±2.00 54.15±3.34 69.55±1.72 69.55±0.78 66.27±2.38 63.48±1.68
F1 87.02±0.82 87.02±0.82 65.67±1.95 66.54±3.33 80.95±1.22 81.31±0.57 77.90±1.97 75.69±1.54

Precision 81.96±0.72 81.96±0.72 84.57±1.18 82.44±1.73 82.94±0.79 81.71±0.68 83.91±0.80 83.12±0.46
Recall 92.77±1.11 92.77±1.11 53.70±2.27 55.91±4.53 79.06±1.89 80.94±1.24 72.77±3.18 69.53±2.65

±Nasal

Accuracy 54.63±2.19 54.63±2.19 48.92±2.17 48.71±3.23 55.89±2.47 55.61±2.38 54.70±2.72 54.08±2.05
F1 31.85±2.44 31.85±2.44 40.44±2.63 40.79±2.22 41.53±4.67 39.52±3.85 41.92±3.77 39.79±2.79

Precision 35.03±3.11 35.03±3.11 35.01±2.20 35.16±2.60 39.85±3.69 39.04±3.21 39.16±3.33 37.91±2.49
Recall 29.23±2.07 29.23±2.07 47.88±3.41 48.65±1.98 43.46±6.00 40.19±5.14 45.19±4.75 41.92±3.47

±Bilabial

Accuracy 58.05±2.62 58.05±2.62 51.85±3.40 52.68±2.11 57.49±2.73 55.96±1.98 57.07±1.07 54.36±2.82
F1 34.94±4.20 34.94±4.20 44.99±2.78 44.90±2.63 40.70±4.81 40.14±1.62 44.98±1.72 42.58±5.47

Precision 39.92±4.66 39.92±4.66 38.51±2.54 38.85±2.06 41.05±4.32 39.65±1.88 41.99±1.36 39.00±4.08
Recall 31.15±4.15 31.15±4.15 54.42±5.11 53.27±4.11 40.38±5.30 40.77±2.55 48.46±2.32 47.12±7.86

±/iy/

Accuracy 57.84±1.96 57.84±1.96 52.75±2.20 54.56±2.54 59.16±1.35 61.25±3.60 57.00±1.39 57.42±1.80
F1 34.87±1.63 34.87±1.63 43.43±1.72 45.43±1.84 45.33±3.17 47.58±5.21 43.74±1.20 44.66±2.72

Precision 39.79±2.67 39.79±2.67 38.40±1.91 40.31±2.32 43.97±1.97 46.65±4.71 41.65±1.37 42.22±2.23
Recall 31.15±1.98 31.15±1.98 50.00±1.72 52.12±1.65 46.92±4.99 48.65±6.19 46.15±2.51 47.50±3.97

±/uw/

Accuracy 89.41±1.11 89.41±1.11 52.89±0.41 53.24±3.17 80.77±2.11 82.65±1.27 70.59±4.20 72.20±2.22
F1 5.17±4.73 5.17±4.73 13.54±1.58 14.58±1.60 9.98±3.78 9.98±3.25 12.50±5.05 12.47±4.81

Precision 16.67±13.94 16.67±13.94 8.12±0.93 8.75±1.02 8.86±3.54 9.39±2.95 8.74±3.94 8.70±3.29
Recall 3.08±2.88 3.08±2.88 40.77±5.22 43.85±3.92 11.54±4.21 10.77±3.77 22.31±6.62 22.31±9.55

Task Metric (%) Random Forest Classifier Support Vector Machine Classifier

NS ROS SMOTE ADASYN NS ROS SMOTE ADASYN

C/V

Accuracy 81.74±0.36 81.60±0.34 76.86±1.05 76.24±1.53 81.88±0.00 53.38±22.34 53.87±24.88 75.47±4.15
F1 89.95±0.21 89.85±0.20 86.65±0.58 86.24±0.96 90.04±0.00 58.30±30.50 56.48±34.65 85.66±2.90

Precision 81.90±0.14 81.92±0.21 82.16±0.78 81.98±0.75 81.88±0.00 81.72±0.17 84.08±3.46 81.71±0.32
Recall 99.74±0.34 99.49±0.42 91.66±0.79 90.98±1.75 100.00±0.00 55.57±35.27 56.00±39.64 90.21±6.16

±Nasal

Accuracy 62.65±1.35 60.98±1.15 58.82±1.75 57.42±1.77 63.69±0.14 57.28±7.51 49.83±10.17 44.74±9.02
F1 16.10±2.50 24.63±2.95 36.75±5.63 36.00±3.81 0.00±0.00 19.31±16.12 33.61±21.22 43.52±17.51

Precision 45.39±6.85 41.12±3.20 41.18±3.81 39.52±2.62 0.00±0.00 35.28±4.86 35.85±3.51 37.12±0.75
Recall 10.00±2.16 17.69±2.76 33.46±7.00 33.27±4.96 0.00±0.00 22.12±29.94 51.92±38.88 73.27±34.49

±Bilabial

Accuracy 63.83±0.97 62.86±1.00 60.35±0.74 61.60±2.56 63.76±0.00 52.06±11.68 47.80±9.72 54.91±9.18
F1 20.67±2.65 27.18±3.13 37.62±1.82 39.88±3.75 0.00±0.00 26.27±21.39 36.94±17.65 25.06±14.58

Precision 51.28±5.93 46.99±3.09 43.80±1.10 46.24±4.50 0.00±0.00 33.79±4.36 35.00±3.84 33.86±4.04
Recall 13.08±2.16 19.23±2.85 33.08±2.76 35.19±3.83 0.00±0.00 40.96±43.91 56.54±38.00 29.62±34.00

±/iy/

Accuracy 66.06±1.42 64.95±2.21 63.41±3.65 63.48±1.78 63.76±0.00 51.01±11.67 54.98±7.83 56.03±10.13
F1 31.80±4.18 39.61±3.36 44.94±5.13 45.17±2.58 0.00±0.00 30.11±17.70 28.87±12.17 24.33±14.23

Precision 58.17±4.54 52.93±5.00 49.78±5.70 49.59±2.85 0.00±0.00 38.41±8.87 36.03±6.73 38.07±8.98
Recall 21.92±3.35 31.73±2.92 41.35±5.86 41.54±2.88 0.00±0.00 42.88±39.04 31.54±28.69 28.27±33.99

±/uw/

Accuracy 90.94±0.00 90.94±0.00 88.78±0.95 88.78±0.95 90.94±0.00 28.78±24.50 27.80±23.63 40.14±31.10
F1 0.00±0.00 0.00±0.00 4.55±2.29 4.78±2.44 0.00±0.00 15.23±2.07 16.81±0.77 13.46±3.86

Precision 0.00±0.00 0.00±0.00 9.02±4.95 13.17±10.96 0.00±0.00 8.89±0.14 9.82±1.55 8.28±1.03
Recall 0.00±0.00 0.00±0.00 3.08±1.54 3.08±1.54 0.00±0.00 74.62±29.65 79.23±24.40 60.77±40.29
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Table 4.2: Confusion matrices for different tasks across different classifiers and samplers. Each
cell contains the 5 fold averaged confusion matrix values along with the corresponding standard
deviation. NS: No Sampler, ROS: Random Over Sampler, SMOTE, ADASYN.

Task Decision Tree Classifier

NS ROS SMOTE ADASYN

Task-0

Task-1

Task-2

Task-3

Task-4

Task Random Forest Classifier Support Vector Machine Classifier

NS ROS SMOTE ADASYN NS ROS SMOTE ADASYN

Task-0

Task-1

Task-2

Task-3

Task-4

22



Table 4.3: Average accuracies (%) across modalities and classes given the SVM-quad classifier
from KaraOne methodology [27], and for select classifiers based on the proposed methodology.

Task
Method Classifier Modality C/V ± Nasal ± Bilabial ± /iy/ ± /uw/

KaraOne SVM-quad

EEG 18.08 63.50 56.64 59.60 79.16
FAC 62.54 48.10 63.73 40.25 20.68

AUD 81.05 40.48 39.98 37.63 18.33
EEG+FAC 72.17 48.41 63.73 56.03 19.60

EEG+AUD 61.13 62.72 39.99 49.15 83.75
ALL 75.72 51.87 63.73 46.01 20.20

IFST

RF + ROS

EEG

81.60 60.98 62.86 64.95 90.94
HC + NS / ROS 77.35 54.63 58.05 57.84 89.41

DT + ROS 69.55 55.61 55.96 61.25 82.65
SVM + ADASYN 75.47 44.74 54.91 56.03 40.14

4.1.1 Comparative analysis with existing literature

Comparative analysis with KaraOne methodology : The KaraOne study by [27] addresses

the challenge of feature reduction by employing Pearson correlation coefficients to analyze

the relationship between EEG features and classes. This approach is motivated by the high-

dimensional nature of the feature space. Each EEG feature’s correlation with the classes is

individually assessed using Pearson correlation analysis. Subsequently, the top N features with

the highest absolute correlation coefficients are selected for each task, where N ∈ {5, . . . ,100}.

Figure 4.1 illustrates this methodology.

W
windows

w1

w2

w3

w4

w5

C channels

c1 c2 c3 c4 c5 c6

f1

f2

f3

f4

Feature tensor

Flatten
(axis:{w, c})

...

Compute
Pearson

correlations

...

Select N
highest |ρ|’s

N

F
features

EEG
features

Class labels
for a task

Selected
features

Figure 4.1: EEG features are ranked based on their Pearson correlations with the given classes for
each task independenly. N features are selected with the highest absolute correlation coefficients,
where N ∈ {5, . . . ,100}.
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A limitation of the KaraOne feature selection method is that the set of features selected for

each task has varying attributes and varies vastly with the choice of N. The addition of new data

also affects the features that are selected. Further, most of the features are discarded and do

not contribute to adding any information to the features selected. This contrasts the proposed

methodology of having a fixed number of attributes that correspond to each feature and remain

unchanged with adding new data or with the choice of some hyperparameter N and utilising

information from all the features across all the windows and channels. Furthermore, this method

requires the speaking segment of the trials to be available, while the proposed method only

utilises the imagined speech segment.

4.1.2 Correlation analysis: EEG vs. Acoustic features

In addition, Pearson correlation coefficients are computed between the EEG and acoustic

features, comparing the 17×81 = 1377 audio features with each of the 62 EEG channels across

all imagined speech segments in the dataset. This analysis aimed to gauge how effectively each

EEG channel predicts the corresponding audio output [27]. The top ten highest correlations are

given in Table 4.4 and shown in Figure 4.2 w.r.t. the Modified Combinatorial Nomenclature.

Table 4.4: Top 10 highest mean correlations and their corresponding p-values between the
acoustic and EEG features in each of the 62 channels across all the imagined speech segments
in the dataset.

Channel T7 FT7 TP7 FT8 P3 CP5 T8 P5 P7 C4

Pearson r 0.2397 0.2343 0.2297 0.2291 0.2284 0.2282 0.2281 0.2280 0.2277 0.2263
p-Value 0.0434 0.0467 0.0550 0.0521 0.0579 0.0573 0.0528 0.0568 0.0571 0.0492

4.2 Limitations

As highlighted in [17], EEG-based BCI systems for imagined speech classification face several

challenges. One of the primary limitations is the restricted vocabulary size that these systems

can effectively recognize. This limitation arises because the neural signals associated with

imagined speech are subtle and can be easily confounded by noise or overlapping mental

activities. Consequently, the classification accuracy tends to decrease as the number of target

words or phrases increases. Additionally, mental repetition poses a significant challenge. In

many BCI studies, participants are required to repeatedly imagine the same word or phrase to

generate sufficient data for training and testing the classification algorithms. This repetitive task

can lead to mental fatigue and reduced concentration, further affecting the quality of the EEG

signals and, consequently, the performance of the BCI system.

This limitation is also acknowledged in the present study. Despite efforts to mitigate

these issues through advanced signal processing techniques and robust machine learning
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Figure 4.2: EEG electrode placement according to the ‘International 10–20 system’ with the
‘Modified Combinatorial Nomenclature (MCN)’. The red circles indicate the top 10 EEG
channels with the highest absolute correlation coefficients between the Acoustic and EEG
features.

algorithms, the problem of limited vocabulary and mental repetition remains a significant barrier.

The vocabulary used in this study was necessarily restricted to ensure reliable classification

performance. Future research needs to explore more sophisticated methods to enhance signal

clarity and develop strategies to expand the vocabulary without compromising the system’s

accuracy. Moreover, the variability in EEG signals across different individuals adds another layer

of complexity. Each person’s brain activity patterns are unique, which means that models trained

on one individual’s data may not generalize well to others. This individual variability necessitates

the development of personalized models, which can be time-consuming and resource-intensive.

Another critical limitation is the susceptibility of EEG signals to external artifacts, such as

muscle movements, eye blinks, and environmental noise. These artifacts can obscure the neural

signals of interest, making it difficult for the classification algorithms to accurately interpret the

imagined speech. While artifact removal techniques have improved, they are not foolproof and

can sometimes result in the loss of important neural information.

Finally, the current study, like many others in the field, was conducted in controlled laboratory

settings. The transition of BCI systems from the lab to real-world applications introduces

additional challenges, such as varying environmental conditions and the need for more user-

friendly interfaces. Ensuring the robustness and usability of EEG-based BCI systems in everyday

scenarios remains an open area of research.
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4.3 Applications

Potential applications include brain-computer interfaces for communication in military settings,

assistive technologies for individuals with speech impairments due to various neuro-biological

disorders such as Alzheimer’s disease, Parkinson’s disease, and ‘Amyotrophic lateral sclerosis

(ALS)’ where there is an impairment in physical movement but not in cognitive function [4].
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CHAPTER 5

CONCLUSION

5.1 Conclusion

In this work, we have explored the use of Information set theory techniques to extract rich

spatio-temporal features from EEG signals for the imagined speech classification task. These

features offer better differentiating power and drastically reduce the dataset size used for

training without sacrificing classification performance. They address the issue of not being

able to effectively utilise all the information present in the EEG signals, without sacrificing

computational complexity of the feature space. This advancement paves the way for more robust

and practical applications in real-world scenarios, ultimately contributing to the development of

more accessible communication aids for individuals with speech impairments.

5.2 Future scope of work

The current implementation explores utilising the rich spatio-temporal features on machine

learning models due to their simplicity and the fact that they have a feature extraction step. This

feature extraction step is implicit in deep learning models, which are able to learn the features

based on updating weights in an artificial neural network. The drawback of such methods is

that they require a huge amount of data to train the model. The future work could involve

exploring deep learning models for the same problem and comparing the results with the current

implementation. Further, the addition of the information set-based features can be explored in a

multi-class classification task.
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ANNEXURES

A.1 ANOVA analysis

Table A.1: ANOVA analysis of the five binary classification tasks

Index Feature
Task-0 Task-1 Task-2 Task-3 Task-4

F-Statistic p-Value F-Statistic p-Value F-Statistic p-Value F-Statistic p-Value F-Statistic p-Value

1 Mean 8.25 0.00 0.00 0.97 0.00 0.98 0.46 0.50 0.04 0.84

2 Absolute mean 3.49 0.06 1.80 0.18 1.34 0.25 1.16 0.28 0.01 0.93

3 Maximum 0.00 0.99 0.64 0.42 0.01 0.90 0.95 0.33 0.91 0.34

4 Absolute Maximum 0.14 0.71 0.82 0.37 0.52 0.47 0.80 0.37 0.06 0.80

5 Minimum 0.00 0.98 0.53 0.47 0.03 0.87 1.03 0.31 1.11 0.29

6 Absolute minimum 1.67 0.20 2.83 0.09 1.65 0.20 0.00 0.95 0.34 0.56

7 Minimum + Maximum 9.63 0.00 0.11 0.74 0.09 0.76 0.02 0.89 0.15 0.69

8 Maximum - Minimum 0.00 0.97 0.54 0.46 0.07 0.79 0.90 0.34 0.63 0.43

9 Curve length 2.88 0.09 1.67 0.20 0.02 0.90 0.86 0.35 7.06 0.01

10 Energy 2.41 0.12 0.07 0.79 1.86 0.17 0.36 0.55 0.74 0.39

11 Non-linear energy 0.00 0.95 0.02 0.88 0.01 0.93 0.00 0.97 0.73 0.39

12 Integral 8.25 0.00 0.00 0.97 0.00 0.98 0.46 0.50 0.04 0.84

13 Standard deviation 0.02 0.90 0.50 0.48 0.08 0.77 1.23 0.27 0.13 0.72

14 Variance 0.38 0.54 0.63 0.43 0.14 0.71 0.67 0.41 0.01 0.92

15 Skewness 0.61 0.44 0.26 0.61 0.47 0.50 0.44 0.51 0.23 0.63

16 Kurtosis 1.17 0.28 6.78 0.01 0.10 0.75 0.23 0.63 6.84 0.01

17 Sum 8.25 0.00 0.00 0.97 0.00 0.98 0.46 0.50 0.04 0.84

18 Spectral entropy 13.28 0.00 5.93 0.01 0.21 0.65 1.95 0.16 8.15 0.00

19 Sample entropy 10.29 0.00 0.46 0.50 0.91 0.34 1.46 0.23 4.02 0.05

20 Permutation entropy 16.58 0.00 6.43 0.01 4.57 0.03 3.46 0.06 16.92 0.00

21 SVD entropy 5.55 0.02 0.02 0.89 2.41 0.12 0.53 0.46 4.09 0.04

22 Approximate entropy 11.92 0.00 1.04 0.31 0.33 0.56 0.57 0.45 4.83 0.03

23 Petrosian fractal dimension 0.86 0.35 3.00 0.08 0.30 0.58 0.93 0.34 1.92 0.17

24 Katz fractal dimension 13.09 0.00 0.08 0.78 1.98 0.16 3.44 0.06 4.28 0.04

25 Higuchi fractal dimension 10.43 0.00 4.41 0.04 3.03 0.08 2.83 0.09 16.31 0.00

26 Root Mean Square 1.53 0.22 1.22 0.27 1.05 0.31 1.16 0.28 0.00 0.98

27 Detrended fluctuation 0.56 0.45 0.50 0.48 2.68 0.10 8.26 0.00 1.26 0.26

28 ∆ Mean 9.67 0.00 10.78 0.00 1.90 0.17 0.16 0.69 3.55 0.06

29 ∆ Absolute mean 1.22 0.27 2.77 0.10 0.89 0.35 0.58 0.45 0.00 0.99

30 ∆ Maximum 0.76 0.38 0.44 0.51 0.16 0.69 0.95 0.33 3.35 0.07

31 ∆ Absolute maximum 0.16 0.69 0.51 0.48 0.07 0.80 1.50 0.22 1.54 0.21

32 ∆ Minimum 0.51 0.48 0.52 0.47 0.20 0.65 1.17 0.28 3.98 0.05

33 ∆ Absolute minimum 0.08 0.78 1.12 0.29 0.03 0.85 1.57 0.21 3.11 0.08

34 ∆ Minimum + Maximum 0.01 0.91 0.16 0.69 0.69 0.41 0.09 0.76 1.64 0.20

35 ∆ Maximum - Minimum 0.18 0.67 0.38 0.54 0.40 0.53 1.57 0.21 3.19 0.07

36 ∆ Curve length 7.52 0.01 0.06 0.81 1.52 0.22 0.53 0.47 3.39 0.07

37 ∆ Energy 2.52 0.11 7.83 0.01 2.42 0.12 5.27 0.02 0.14 0.71

38 ∆ Non-linear energy 3.39 0.07 0.03 0.86 1.81 0.18 0.02 0.90 0.16 0.69
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Table A.1 continued from previous page

Index Feature
Task-0 Task-1 Task-2 Task-3 Task-4

F-Statistic p-Value F-Statistic p-Value F-Statistic p-Value F-Statistic p-Value F-Statistic p-Value

39 ∆ Integral 10.07 0.00 10.98 0.00 1.93 0.16 0.17 0.68 3.55 0.06

40 ∆ Standard deviation 0.07 0.79 0.76 0.38 0.24 0.62 1.05 0.31 2.03 0.15

41 ∆ Variance 3.45 0.06 3.03 0.08 1.49 0.22 3.58 0.06 0.89 0.35

42 ∆ Skewness 0.00 0.96 0.68 0.41 1.76 0.18 1.51 0.22 0.03 0.86

43 ∆ Kurtosis 5.05 0.02 0.27 0.60 0.73 0.39 4.50 0.03 2.84 0.09

44 ∆ Sum 9.67 0.00 10.78 0.00 1.90 0.17 0.16 0.69 3.55 0.06

45 ∆ Spectral entropy 0.15 0.70 2.21 0.14 2.47 0.12 1.39 0.24 0.00 0.97

46 ∆ Sample entropy 1.07 0.30 0.92 0.34 1.10 0.30 0.88 0.35 1.93 0.16

47 ∆ Permutation entropy 0.12 0.73 0.06 0.81 0.02 0.89 0.46 0.50 4.17 0.04

48 ∆ SVD entropy 0.16 0.69 2.53 0.11 1.32 0.25 9.16 0.00 1.58 0.21

49 ∆ Approximate entropy 0.93 0.33 0.81 0.37 1.31 0.25 0.46 0.50 1.97 0.16

50 ∆ Petrosian fractal dimension 1.21 0.27 0.14 0.71 0.66 0.42 0.82 0.36 2.62 0.11

51 ∆ Katz fractal dimension 5.07 0.02 0.21 0.65 0.07 0.80 0.93 0.34 1.90 0.17

52 ∆ Higuchi fractal dimension 3.51 0.06 2.04 0.15 0.32 0.57 0.07 0.79 4.02 0.05

53 ∆ Root Mean Square 0.62 0.43 1.90 0.17 0.15 0.70 1.35 0.25 0.24 0.63

54 ∆ Detrended fluctuation 2.70 0.10 0.02 0.90 0.04 0.84 0.34 0.56 7.87 0.01

55 ∆∆ mean 22.50 0.00 8.56 0.00 0.48 0.49 0.11 0.74 7.66 0.01

56 ∆∆ absmean 0.77 0.38 0.12 0.73 1.82 0.18 4.01 0.05 0.03 0.87

57 ∆∆ maximum 1.02 0.31 0.00 0.99 0.69 0.41 2.05 0.15 0.21 0.65

58 ∆∆ absmax 9.03 0.00 1.28 0.26 1.02 0.31 1.04 0.31 0.49 0.48

59 ∆∆ minimum 3.41 0.06 0.20 0.65 0.87 0.35 2.78 0.10 0.36 0.55

60 ∆∆ absmin 1.15 0.28 2.67 0.10 1.61 0.20 9.75 0.00 0.91 0.34

61 ∆∆ Minimum + Maximum 4.67 0.03 2.71 0.10 6.51 0.01 1.14 0.29 12.10 0.00

62 ∆∆ Maximum - Minimum 9.45 0.00 1.76 0.18 2.22 0.14 5.60 0.02 0.46 0.50

63 ∆∆ Curve length 3.50 0.06 2.07 0.15 1.18 0.28 1.11 0.29 0.71 0.40

64 ∆∆ Energy 1.61 0.20 0.90 0.34 0.27 0.60 2.23 0.14 0.70 0.40

65 ∆∆ Non-linear energy 2.51 0.11 1.14 0.29 0.09 0.76 0.18 0.67 0.08 0.78

66 ∆∆ Integral 22.51 0.00 8.68 0.00 0.48 0.49 0.12 0.73 7.57 0.01

67 ∆∆ Standard deviation 6.21 0.01 2.71 0.10 2.28 0.13 6.54 0.01 0.10 0.75

68 ∆∆ Variance 4.94 0.03 1.71 0.19 3.11 0.08 5.12 0.02 0.24 0.62

69 ∆∆ Skewness 1.39 0.24 1.23 0.27 0.99 0.32 0.71 0.40 0.01 0.92

70 ∆∆ Kurtosis 1.58 0.21 1.26 0.26 0.02 0.88 0.23 0.63 0.00 0.95

71 ∆∆ Sum 22.50 0.00 8.56 0.00 0.48 0.49 0.11 0.74 7.66 0.01

72 ∆∆ Spectral entropy 19.22 0.00 0.04 0.84 0.58 0.45 0.08 0.78 0.66 0.42

73 ∆∆ Sample entropy 15.10 0.00 0.22 0.64 0.09 0.76 0.66 0.42 0.04 0.85

74 ∆∆ Permutation entropy 1.15 0.28 0.07 0.79 0.06 0.81 0.04 0.84 0.84 0.36

75 ∆∆ SVD entropy 8.00 0.00 0.91 0.34 1.81 0.18 3.63 0.06 0.01 0.92

76 ∆∆ Approximate entropy 14.17 0.00 0.50 0.48 0.59 0.44 0.53 0.47 0.42 0.52

77 ∆∆ Petrosian fractal dimension 2.06 0.15 0.15 0.70 0.08 0.78 0.10 0.75 0.31 0.58

78 ∆∆ Katz fractal dimension 13.48 0.00 0.02 0.88 3.40 0.07 4.80 0.03 2.00 0.16

79 ∆∆ Higuchi fractal dimension 1.48 0.22 0.12 0.73 0.08 0.78 0.39 0.53 0.85 0.36

80 ∆∆ Root Mean Square 0.29 0.59 0.09 0.77 1.28 0.26 2.81 0.09 0.05 0.82

81 ∆∆ Detrended fluctuation 0.02 0.88 0.64 0.42 0.57 0.45 0.07 0.79 0.01 0.91
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A.2 Feature functions

Table A.2: Summary of functions used for feature extraction on the windows.

Feature Function Computation

Mean
1
n

n

∑
i=1

xi

Absolute mean
1
n

n

∑
i=1

|xi|

Maximum max(x)

Absolute maximum max(|x|)

Minimum min(x)

Absolute minimum min(|x|)

Minimum ± Maximum max(x)±min(x)

Curve length
n−1

∑
i=1

|xi − xi+1|

Energy
n

∑
i=1

x2
i

Nonlinear energy
n−1

∑
i=2

x2
i − xi+1xi−1

Integral
∫ b

a
x(t)dt

Standard deviation

√
1
n

n

∑
i=1

(xi −mean(x))2

Variance
1
n

n

∑
i=1

(xi −mean(x))2

33



Table A.2 – Continued from previous page

Feature Function Computation

Skew
n

(n−1)(n−2)

n

∑
i=1

(
xi − x̄

s

)3

Kurtosis
n(n+1)

(n−1)(n−2)(n−3)

n

∑
i=1

(
xi − x̄

s

)4

− 3(n−1)2

(n−2)(n−3)

Sum
n

∑
i=1

xi

Spectral entropy [14] −
n

∑
i=1

Pi log(Pi)

Sample entropy [23] − log(A/B)

Permutation entropy [2] −
N!

∑
i=1

Pi log(Pi)

Singular Value

Decomposition entropy [25]

−
m

∑
i=1

σi log(σi)

Approximate entropy [23] log(C/D)

Petrosian fractal

dimension [21, 10]

log(N)

log(N)+ log(N/N0)

Katz fractal dimension [9]
log(L)

log(d/L)+ log(d/L0)

Higuchi fractal

dimension [13]

D =
log(L)

log(1/L)

Root Mean Square

√
1
n

n

∑
i=1

x2
i

Detrended fluctuation [11] F(n) =

√
1
n

n

∑
i=1

(y(i)− ȳn)2
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A.3 Hanman classifier

The implementation is available at:

https://github.com/AshrithSagar/EEG-Imagined-speech-recognition/blob/master/utils/models.py

1 import numpy as np

2 from joblib import Parallel, delayed

3 from sklearn.base import BaseEstimator, ClassifierMixin

4 from sklearn.preprocessing import minmax_scale

5 from sklearn.utils.multiclass import unique_labels

6 from sklearn.utils.validation import check_array, check_is_fitted, check_X_y

7

8

9 class HanmanClassifier(BaseEstimator, ClassifierMixin):

10 def __init__(

11 self, *, alpha=None, beta=None, a=None, b=None, q=None, n_jobs=1, verbose=None

12 ):

13 self.alpha = alpha

14 self.beta = beta

15 self.a = a

16 self.b = b

17 self.q = q

18 self.n_jobs = n_jobs

19 self.verbose = verbose

20

21 def __repr__(self):

22 return (

23 f"HanmanClassifier("

24 f"alpha={self.alpha}, beta={self.beta}, a={self.a}, b={self.b}, q={self.q}"

25 f")"

26 )

27

28 @staticmethod

29 def frank_t_norm(a, b, q):

30 numerator = (q**a - 1) * (q**b - 1)

31

32 denominator = q - 1

33 if denominator == 0:

34 return 0 # Handle division by zero

35

36 return np.log1p(numerator / denominator) / np.log(q)

37

38 def fit(self, X_train, y_train):

39 """Fit the classifier to the training data.

40

41 Parameters:-

42 X_train : array-like of shape (n_samples, n_features)

43 y_train : array-like of shape (n_samples,)

44

45 Returns an instance of the estimator.

46 """

47

48 X_train, y_train = check_X_y(X_train, y_train)

49 self.classes_ = unique_labels(y_train)

50 self.X_, self.y_ = X_train, y_train

51 self.n_features_in_ = X_train.shape[1]

52
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53 # Pre-compute the normalized training data for each class

54 self.X_cls = [

55 minmax_scale(self.X_, axis=1)[self.y_ == cls] for cls in self.classes_

56 ]

57

58 self.is_fitted_ = True

59 return self

60

61 def predict(self, X_test):

62 """Predict class labels for samples in X_test.

63

64 Parameters:-

65 X_test : array-like of shape (n_samples, n_features)

66

67 Returns:-

68 ndarray of shape (n_samples,)

69 """

70

71 check_is_fitted(self, ["X_", "y_"])

72 X_test = check_array(X_test)

73

74 X_test = minmax_scale(X_test, axis=1)

75

76 y_pred = Parallel(n_jobs=self.n_jobs)(

77 delayed(self._predict_sample)(sample) for sample in X_test

78 )

79

80 return np.array(y_pred)

81

82 def _predict_sample(self, sample):

83 """Predict the class label for a single sample.

84

85 Parameters:-

86 sample : array-like of shape (n_features,)

87 The input sample, assuming MinMax scaled along features.

88

89 Returns:

90 The predicted class label for the input sample.

91 """

92

93 entropies = np.zeros(len(self.classes_))

94 for cls_idx, X_cls in enumerate(self.X_cls):

95 error = np.abs(X_cls - sample)

96

97 norm_error = self.frank_t_norm(error[:, None], error[None, :], self.q)

98 min_norm_error = np.min(norm_error, axis=(0, 1))

99

100 possibilistic_uncertainty = np.sum(

101 min_norm_error**self.alpha

102 * np.exp(-((self.a * min_norm_error + self.b) ** self.beta))

103 )

104 entropies[cls_idx] = possibilistic_uncertainty

105

106 return np.argmin(entropies, axis=0)
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A.4 Implementation details

The implementation of the proposed methodology is done using Python and the scikit-learn

library [20]. The code is available on GitHub 1 and is structured in a modular way to allow for

easy modification and extension.

A.4.1 Directory structure

• utils/ contains utility classes and functions for data preprocessing, feature extraction,

and classification.

• models/ contains the implementations of the proposed models.

• workflows/ contains the workflows for feature extraction and classification.

• requirements.txt contains the required Python packages.

• README.md contains the instructions for running the code.

A.4.2 Classifier module

The classifier module provides a framework for implementing and evaluating classifiers.

1 from utils.classifier import EvaluateClassifier

2 # Load and import dataset, labels to X, y

3 classifier = EvaluateClassifier(X, y, save_dir='path/to/save', test_size=0.2, verbose=True)

4 classifier.compile(model=None, sampler=None, cv=None) # Specify model & cross-validation strategy

5 classifier.evaluate(show_plots=True) # Evaluate the model using cross-validation

6 classifier.save() # Save evaluation results, metrics, plots, and model parameters

1https://github.com/AshrithSagar/EEG-Imagined-speech-recognition
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